3.18.19 \(\int \frac {\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{(d+e x)^{9/2}} \, dx\)

Optimal. Leaf size=264 \[ \frac {c^3 d^3 \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d^2-a e^2}}\right )}{8 e^{3/2} \left (c d^2-a e^2\right )^{5/2}}+\frac {c^2 d^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{8 e (d+e x)^{3/2} \left (c d^2-a e^2\right )^2}+\frac {c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{12 e (d+e x)^{5/2} \left (c d^2-a e^2\right )}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 e (d+e x)^{7/2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 264, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {662, 672, 660, 205} \begin {gather*} \frac {c^2 d^2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{8 e (d+e x)^{3/2} \left (c d^2-a e^2\right )^2}+\frac {c^3 d^3 \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d^2-a e^2}}\right )}{8 e^{3/2} \left (c d^2-a e^2\right )^{5/2}}+\frac {c d \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{12 e (d+e x)^{5/2} \left (c d^2-a e^2\right )}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 e (d+e x)^{7/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d + e*x)^(9/2),x]

[Out]

-Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(3*e*(d + e*x)^(7/2)) + (c*d*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d
*e*x^2])/(12*e*(c*d^2 - a*e^2)*(d + e*x)^(5/2)) + (c^2*d^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(8*e*(
c*d^2 - a*e^2)^2*(d + e*x)^(3/2)) + (c^3*d^3*ArcTan[(Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqr
t[c*d^2 - a*e^2]*Sqrt[d + e*x])])/(8*e^(3/2)*(c*d^2 - a*e^2)^(5/2))

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 660

Int[1/(Sqrt[(d_.) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e, Subst[Int[1/(
2*c*d - b*e + e^2*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^
2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 662

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + p + 1)), x] - Dist[(c*p)/(e^2*(m + p + 1)), Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2
)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[
p, 0] && (LtQ[m, -2] || EqQ[m + 2*p + 1, 0]) && NeQ[m + p + 1, 0] && IntegerQ[2*p]

Rule 672

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[(e*(d + e*x)^m*(a +
 b*x + c*x^2)^(p + 1))/((m + p + 1)*(2*c*d - b*e)), x] + Dist[(c*(m + 2*p + 2))/((m + p + 1)*(2*c*d - b*e)), I
nt[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ
[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, 0] && NeQ[m + p + 1, 0] && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^{9/2}} \, dx &=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 e (d+e x)^{7/2}}+\frac {(c d) \int \frac {1}{(d+e x)^{5/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{6 e}\\ &=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 e (d+e x)^{7/2}}+\frac {c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{12 e \left (c d^2-a e^2\right ) (d+e x)^{5/2}}+\frac {\left (c^2 d^2\right ) \int \frac {1}{(d+e x)^{3/2} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 e \left (c d^2-a e^2\right )}\\ &=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 e (d+e x)^{7/2}}+\frac {c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{12 e \left (c d^2-a e^2\right ) (d+e x)^{5/2}}+\frac {c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 e \left (c d^2-a e^2\right )^2 (d+e x)^{3/2}}+\frac {\left (c^3 d^3\right ) \int \frac {1}{\sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{16 e \left (c d^2-a e^2\right )^2}\\ &=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 e (d+e x)^{7/2}}+\frac {c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{12 e \left (c d^2-a e^2\right ) (d+e x)^{5/2}}+\frac {c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 e \left (c d^2-a e^2\right )^2 (d+e x)^{3/2}}+\frac {\left (c^3 d^3\right ) \operatorname {Subst}\left (\int \frac {1}{2 c d^2 e-e \left (c d^2+a e^2\right )+e^2 x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )}{8 \left (c d^2-a e^2\right )^2}\\ &=-\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 e (d+e x)^{7/2}}+\frac {c d \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{12 e \left (c d^2-a e^2\right ) (d+e x)^{5/2}}+\frac {c^2 d^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 e \left (c d^2-a e^2\right )^2 (d+e x)^{3/2}}+\frac {c^3 d^3 \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d^2-a e^2} \sqrt {d+e x}}\right )}{8 e^{3/2} \left (c d^2-a e^2\right )^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.04, size = 83, normalized size = 0.31 \begin {gather*} \frac {2 c^3 d^3 ((d+e x) (a e+c d x))^{3/2} \, _2F_1\left (\frac {3}{2},4;\frac {5}{2};\frac {e (a e+c d x)}{a e^2-c d^2}\right )}{3 (d+e x)^{3/2} \left (c d^2-a e^2\right )^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d + e*x)^(9/2),x]

[Out]

(2*c^3*d^3*((a*e + c*d*x)*(d + e*x))^(3/2)*Hypergeometric2F1[3/2, 4, 5/2, (e*(a*e + c*d*x))/(-(c*d^2) + a*e^2)
])/(3*(c*d^2 - a*e^2)^4*(d + e*x)^(3/2))

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 180.12, size = 0, normalized size = 0.00 \begin {gather*} \text {\$Aborted} \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d + e*x)^(9/2),x]

[Out]

$Aborted

________________________________________________________________________________________

fricas [B]  time = 0.45, size = 1115, normalized size = 4.22 \begin {gather*} \left [-\frac {3 \, {\left (c^{3} d^{3} e^{4} x^{4} + 4 \, c^{3} d^{4} e^{3} x^{3} + 6 \, c^{3} d^{5} e^{2} x^{2} + 4 \, c^{3} d^{6} e x + c^{3} d^{7}\right )} \sqrt {-c d^{2} e + a e^{3}} \log \left (-\frac {c d e^{2} x^{2} + 2 \, a e^{3} x - c d^{3} + 2 \, a d e^{2} - 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {-c d^{2} e + a e^{3}} \sqrt {e x + d}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) + 2 \, {\left (3 \, c^{3} d^{6} e - 17 \, a c^{2} d^{4} e^{3} + 22 \, a^{2} c d^{2} e^{5} - 8 \, a^{3} e^{7} - 3 \, {\left (c^{3} d^{4} e^{3} - a c^{2} d^{2} e^{5}\right )} x^{2} - 2 \, {\left (4 \, c^{3} d^{5} e^{2} - 5 \, a c^{2} d^{3} e^{4} + a^{2} c d e^{6}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{48 \, {\left (c^{3} d^{10} e^{2} - 3 \, a c^{2} d^{8} e^{4} + 3 \, a^{2} c d^{6} e^{6} - a^{3} d^{4} e^{8} + {\left (c^{3} d^{6} e^{6} - 3 \, a c^{2} d^{4} e^{8} + 3 \, a^{2} c d^{2} e^{10} - a^{3} e^{12}\right )} x^{4} + 4 \, {\left (c^{3} d^{7} e^{5} - 3 \, a c^{2} d^{5} e^{7} + 3 \, a^{2} c d^{3} e^{9} - a^{3} d e^{11}\right )} x^{3} + 6 \, {\left (c^{3} d^{8} e^{4} - 3 \, a c^{2} d^{6} e^{6} + 3 \, a^{2} c d^{4} e^{8} - a^{3} d^{2} e^{10}\right )} x^{2} + 4 \, {\left (c^{3} d^{9} e^{3} - 3 \, a c^{2} d^{7} e^{5} + 3 \, a^{2} c d^{5} e^{7} - a^{3} d^{3} e^{9}\right )} x\right )}}, -\frac {3 \, {\left (c^{3} d^{3} e^{4} x^{4} + 4 \, c^{3} d^{4} e^{3} x^{3} + 6 \, c^{3} d^{5} e^{2} x^{2} + 4 \, c^{3} d^{6} e x + c^{3} d^{7}\right )} \sqrt {c d^{2} e - a e^{3}} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {c d^{2} e - a e^{3}} \sqrt {e x + d}}{c d e^{2} x^{2} + a d e^{2} + {\left (c d^{2} e + a e^{3}\right )} x}\right ) + {\left (3 \, c^{3} d^{6} e - 17 \, a c^{2} d^{4} e^{3} + 22 \, a^{2} c d^{2} e^{5} - 8 \, a^{3} e^{7} - 3 \, {\left (c^{3} d^{4} e^{3} - a c^{2} d^{2} e^{5}\right )} x^{2} - 2 \, {\left (4 \, c^{3} d^{5} e^{2} - 5 \, a c^{2} d^{3} e^{4} + a^{2} c d e^{6}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{24 \, {\left (c^{3} d^{10} e^{2} - 3 \, a c^{2} d^{8} e^{4} + 3 \, a^{2} c d^{6} e^{6} - a^{3} d^{4} e^{8} + {\left (c^{3} d^{6} e^{6} - 3 \, a c^{2} d^{4} e^{8} + 3 \, a^{2} c d^{2} e^{10} - a^{3} e^{12}\right )} x^{4} + 4 \, {\left (c^{3} d^{7} e^{5} - 3 \, a c^{2} d^{5} e^{7} + 3 \, a^{2} c d^{3} e^{9} - a^{3} d e^{11}\right )} x^{3} + 6 \, {\left (c^{3} d^{8} e^{4} - 3 \, a c^{2} d^{6} e^{6} + 3 \, a^{2} c d^{4} e^{8} - a^{3} d^{2} e^{10}\right )} x^{2} + 4 \, {\left (c^{3} d^{9} e^{3} - 3 \, a c^{2} d^{7} e^{5} + 3 \, a^{2} c d^{5} e^{7} - a^{3} d^{3} e^{9}\right )} x\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(9/2),x, algorithm="fricas")

[Out]

[-1/48*(3*(c^3*d^3*e^4*x^4 + 4*c^3*d^4*e^3*x^3 + 6*c^3*d^5*e^2*x^2 + 4*c^3*d^6*e*x + c^3*d^7)*sqrt(-c*d^2*e +
a*e^3)*log(-(c*d*e^2*x^2 + 2*a*e^3*x - c*d^3 + 2*a*d*e^2 - 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(
-c*d^2*e + a*e^3)*sqrt(e*x + d))/(e^2*x^2 + 2*d*e*x + d^2)) + 2*(3*c^3*d^6*e - 17*a*c^2*d^4*e^3 + 22*a^2*c*d^2
*e^5 - 8*a^3*e^7 - 3*(c^3*d^4*e^3 - a*c^2*d^2*e^5)*x^2 - 2*(4*c^3*d^5*e^2 - 5*a*c^2*d^3*e^4 + a^2*c*d*e^6)*x)*
sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c^3*d^10*e^2 - 3*a*c^2*d^8*e^4 + 3*a^2*c*d^6*e^6 -
 a^3*d^4*e^8 + (c^3*d^6*e^6 - 3*a*c^2*d^4*e^8 + 3*a^2*c*d^2*e^10 - a^3*e^12)*x^4 + 4*(c^3*d^7*e^5 - 3*a*c^2*d^
5*e^7 + 3*a^2*c*d^3*e^9 - a^3*d*e^11)*x^3 + 6*(c^3*d^8*e^4 - 3*a*c^2*d^6*e^6 + 3*a^2*c*d^4*e^8 - a^3*d^2*e^10)
*x^2 + 4*(c^3*d^9*e^3 - 3*a*c^2*d^7*e^5 + 3*a^2*c*d^5*e^7 - a^3*d^3*e^9)*x), -1/24*(3*(c^3*d^3*e^4*x^4 + 4*c^3
*d^4*e^3*x^3 + 6*c^3*d^5*e^2*x^2 + 4*c^3*d^6*e*x + c^3*d^7)*sqrt(c*d^2*e - a*e^3)*arctan(sqrt(c*d*e*x^2 + a*d*
e + (c*d^2 + a*e^2)*x)*sqrt(c*d^2*e - a*e^3)*sqrt(e*x + d)/(c*d*e^2*x^2 + a*d*e^2 + (c*d^2*e + a*e^3)*x)) + (3
*c^3*d^6*e - 17*a*c^2*d^4*e^3 + 22*a^2*c*d^2*e^5 - 8*a^3*e^7 - 3*(c^3*d^4*e^3 - a*c^2*d^2*e^5)*x^2 - 2*(4*c^3*
d^5*e^2 - 5*a*c^2*d^3*e^4 + a^2*c*d*e^6)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c^3*d^
10*e^2 - 3*a*c^2*d^8*e^4 + 3*a^2*c*d^6*e^6 - a^3*d^4*e^8 + (c^3*d^6*e^6 - 3*a*c^2*d^4*e^8 + 3*a^2*c*d^2*e^10 -
 a^3*e^12)*x^4 + 4*(c^3*d^7*e^5 - 3*a*c^2*d^5*e^7 + 3*a^2*c*d^3*e^9 - a^3*d*e^11)*x^3 + 6*(c^3*d^8*e^4 - 3*a*c
^2*d^6*e^6 + 3*a^2*c*d^4*e^8 - a^3*d^2*e^10)*x^2 + 4*(c^3*d^9*e^3 - 3*a*c^2*d^7*e^5 + 3*a^2*c*d^5*e^7 - a^3*d^
3*e^9)*x)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{{\left (e x + d\right )}^{\frac {9}{2}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(9/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(e*x + d)^(9/2), x)

________________________________________________________________________________________

maple [A]  time = 0.08, size = 457, normalized size = 1.73 \begin {gather*} -\frac {\sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}\, \left (3 c^{3} d^{3} e^{3} x^{3} \arctanh \left (\frac {\sqrt {c d x +a e}\, e}{\sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}}\right )+9 c^{3} d^{4} e^{2} x^{2} \arctanh \left (\frac {\sqrt {c d x +a e}\, e}{\sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}}\right )+9 c^{3} d^{5} e x \arctanh \left (\frac {\sqrt {c d x +a e}\, e}{\sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}}\right )+3 c^{3} d^{6} \arctanh \left (\frac {\sqrt {c d x +a e}\, e}{\sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}}\right )-3 \sqrt {c d x +a e}\, \sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}\, c^{2} d^{2} e^{2} x^{2}+2 \sqrt {c d x +a e}\, \sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}\, a c d \,e^{3} x -8 \sqrt {c d x +a e}\, \sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}\, c^{2} d^{3} e x +8 \sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}\, \sqrt {c d x +a e}\, a^{2} e^{4}-14 \sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}\, \sqrt {c d x +a e}\, a c \,d^{2} e^{2}+3 \sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}\, \sqrt {c d x +a e}\, c^{2} d^{4}\right )}{24 \left (e x +d \right )^{\frac {7}{2}} \sqrt {\left (a \,e^{2}-c \,d^{2}\right ) e}\, \left (a \,e^{2}-c \,d^{2}\right )^{2} \sqrt {c d x +a e}\, e} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)/(e*x+d)^(9/2),x)

[Out]

-1/24*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)*(3*arctanh((c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2)*e)*x^3*c^3*
d^3*e^3+9*arctanh((c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2)*e)*x^2*c^3*d^4*e^2+9*arctanh((c*d*x+a*e)^(1/2)/((a
*e^2-c*d^2)*e)^(1/2)*e)*x*c^3*d^5*e+3*arctanh((c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2)*e)*c^3*d^6-3*x^2*c^2*d
^2*e^2*(c*d*x+a*e)^(1/2)*((a*e^2-c*d^2)*e)^(1/2)+2*x*a*c*d*e^3*(c*d*x+a*e)^(1/2)*((a*e^2-c*d^2)*e)^(1/2)-8*x*c
^2*d^3*e*(c*d*x+a*e)^(1/2)*((a*e^2-c*d^2)*e)^(1/2)+8*((a*e^2-c*d^2)*e)^(1/2)*(c*d*x+a*e)^(1/2)*a^2*e^4-14*((a*
e^2-c*d^2)*e)^(1/2)*(c*d*x+a*e)^(1/2)*a*c*d^2*e^2+3*((a*e^2-c*d^2)*e)^(1/2)*(c*d*x+a*e)^(1/2)*c^2*d^4)/(e*x+d)
^(7/2)/((a*e^2-c*d^2)*e)^(1/2)/e/(a*e^2-c*d^2)^2/(c*d*x+a*e)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{{\left (e x + d\right )}^{\frac {9}{2}}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(9/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(e*x + d)^(9/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{{\left (d+e\,x\right )}^{9/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(d + e*x)^(9/2),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(d + e*x)^(9/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(e*x+d)**(9/2),x)

[Out]

Timed out

________________________________________________________________________________________